Skip to main content

EduSpark.Blog

SUPERCONDUCTIVITY

Superconductivity


Superconductivity is a phenomenon observed in several metals and ceramic materials. When these materials are cooled to temperatures ranging from near absolute zero of 0 degrees Kelvin, -273 degrees Celsius to liquid nitrogen temperatures of 77 K, -196 C, they have no electrical resistance. The temperature at which electrical resistance is zero is called the critical temperature (Tc) and varies with the individual material. For practical purposes, critical temperatures are achieved by cooling materials with either liquid helium or liquid nitrogen. The following table shows the critical temperatures of various superconductors:

Material

Type

Tc(K)

Zinc

metal

0.88

Aluminum

metal

1.19

Tin

metal

3.72

Mercury

metal

4.15

YBa2Cu3O7

ceramic

90

TlBaCaCuO

ceramic

125

Because these materials have no electrical resistance, meaning electrons can travel through them freely, they can carry large amounts of electrical current for long periods of time without losing energy as heat. Superconducting loops of wire have been shown to carry electrical currents for several years with no measurable loss. This property has implications for electrical power transmission, if transmission lines can be made of superconducting ceramics, and for electrical-storage devices.


Another property of a superconductor is that once the transition from the normal state to the superconducting state occurs, external magnetic fields can't penetrate it. This effect is called the Meissner effect and has implications for making high speed, magnetically-levitated trains .It also has implications for making powerful, small, superconducting magnets for magnetic resonance imaging (MRI).


The atomic structure of most metals is a lattice structure, much like a window screen in which the intersection of each set of perpendicular wires is an atom. Metals hold on to their electrons quite loosely, so these particles can move freely within the lattice -- this is why metals conduct heat and electricity very well. As electrons move through a typical metal in the normal state, they collide with atoms and lose energy in the form of heat. In a superconductor, the electrons travel in pairs and move quickly between the atoms with less energy loss.

As a negatively-charged electron moves through the space between two rows of positively-charged atoms (like the wires in a window screen), it pulls inward on the atoms. This distortion attracts a second electron to move in behind it. This second electron encounters less resistance, much like a passenger car following a truck on the freeway encounters less air resistance. The two electrons form a weak attraction, travel together in a pair and encounter less resistance overall. In a superconductor, electron pairs are constantly forming, breaking and reforming, but the overall effect is that electrons flow with little or no resistance. The low temperature makes it easier for the electrons to pair up.

One final property of superconductors is that when two of them are joined by a thin, insulating layer, it is easier for the electron pairs to pass from one superconductor to another without resistance known as dc Josephson effect. This effect has implications for superfast electrical switches that can be used to make small, high-speed computers.

The future of superconductivity research is to find materials that can become superconductors at room temperature. Once this happens, the whole world of electronics, power and transportation

Comments

Popular posts from this blog

THE STRING THEORY

INTRODUCTION String theory is a developing theory in particle physics which attempts to reconcile quantum mechanics and general relativity . String Theory , sometimes called the Theory of Everything, is thought by some to be the unifying field theory Einstein sought before his death. String theory is the first mathematically sound theory that reconciles the world of the infinitesimally small, with the world we know at large. It unites Einstein’s Theory of Relativity with quantum physics and offers a potential explanation for the Big Bang. What's string theory? String theory posits that the electrons and quarks within an atom are not 0-dimensional objects, but rather 1-dimensional oscillating lines ("strings"), possessing only the dimension of length, but not height or width. The theory poses that these strings can vibrate, thus giving the observed particles their flavor , charge , mass and spin. History of String Theory Gabriele Veneziano, a research fello...

BIG BANG

Big Bang Theory - The Premise The Big Bang theory is an effort to explain what happened at the very beginning of our universe. Discoveries in astronomy and physics have shown beyond a reasonable doubt that our universe did in fact have a beginning. Prior to that moment there was nothing; during and after that moment there was something: our universe. The big bang theory is an effort to explain what happened during and after that moment. According to the standard theory, our universe sprang into existence as "singularity" around 13.7 billion years ago. What is a "singularity" and where does it come from? Well, to be honest, we don't know for sure. Singularities are zones which defy our current understanding of physics. They are thought to exist at the core of "black holes." Black holes are areas of intense gravitational pressure. The pressure is thought to be so intense that finite matter is actually squished into infinite density (a m...

GRAND UNIFIED THEORY

GUT The term Grand Unified Theory or GUT, refers to any of several similar models in particle physics in which at high energy scales, the three gauge interactions of the Standard Model which define the electromagnetic, weak, and strong interactions, are merged into one single interaction characterized by a larger gauge symmetry and one unified coupling constant rather than three independent ones History : Historically, the first true GUT which was based on the simple Lie group SU(5), was proposed by Howard Georgi and Sheldon Glashow in 1974.The Georgi–Glashow model was preceded by the Semisimple Lie algebra Pati–Salam model by Abdus Salam and Jogesh Pati,who pioneered the idea to unify gauge interactions. Unification of forces and the role of supersymmetry : The renormalization group running of the three-gauge couplings has been found to nearly, but not quite, meet at the same point if the hypercharge is normalized so that it is consistent with SU(5) or SO(10) GUTs,...